
Java:
Learning to Program with Robots

Chapter 01: Programming with Objects

C
ha

pt
er

 O
bj

ec
tiv

es

After studying this chapter, you should be able to:
• Describe models
• Describe the relationship between objects and classes
• Understand the syntax and semantics of a simple Java program
• Write object-oriented programs that simulate robots
• Understand and fix errors that can occur when constructing a

program
• Read documentation for classes
• Apply the concepts learned with robots to display a window as used

in a graphical user interface

1.
1:

 M
od

el
in

g
w

ith
 O

bj
ec

ts

• Models are simplified descriptions containing information and
operations used to solve problems
Model Information Operations
Concert Who’s performing

Performance Date
Which seats are sold

Sell a ticket
Count tickets sold

Schedule List of tasks to perform,
each with estimated time

Insert or delete a task
Calc estimated finish time

Restaurant
Seating

Occupied tables
Unoccupied tables
of seats at each table

Mark a table occupied
Mark a table unoccupied

• Models can be maintained:
• in our heads
• with paper and pencil
• with software

1.
1.

2:
 U

si
ng

 S
of

tw
ar

e
O

bj
ec

ts
 to

 M
od

el

• Java programs are composed of software objects
• Software objects have:

• Information, called attributes
• Services that either change the attributes (a command) or

answer a question about attributes (a query)
• A program may have

many similar objects
• Objects can be

visualized with an
object diagram
• shows attribute

names and values

Concert

d ate: 28-M arch-2008

perfo rm er: To ro nto Sym ph on y

un so ld Tickets : 35A, 35B, 35C

so ld Tickets : 10A, 10B, .. . , 34Z , ...
35D, .. .

Concert

date: 21-M arch-2008

p erfo rm er: Great B ig Sea

un so ld Tickets : 10D, 22H, 25A ,
25B, 25C, 28Z ,...

Sold Seats : 10A, 10B, 10C,
..., 22N, 22P , .. .

Concert

date: 22 -M arch-2008

perform er: Great Big Sea

u nsoldT ickets: 35A, 35B, 35C

soldT ickets: 10A, 10B, ... , 34Z ,
... 35D , .. .

Type of
object

Attribute
values

Attribute
names

1.
1.

2:
 U

si
ng

 S
of

tw
ar

e
O

bj
ec

ts
 to

 M
od

el

• A group of objects that
• have the same kind of information
• offer the same services

 are called a class
• Classes are

represented with a
class diagram

Concert
date
performer
unsoldTickets
soldTickets
Concert(date, performer)
numTicketsSold()
valueOfTicketsSold()
performerName()
performanceDate()
sellTicket(seatNumber)

Name of
the class
Attributes

Services

1.
2:

 U
nd

er
st

an
di

ng
 K

ar
el

’s
 W

or
ld

Q
ui

ck
 Q

ui
z 1.Draw an object diagram

for the robot labelled “M”
on the previous slide.
Hint: Three Concert
object diagrams are
shown to the right.

2.Draw your object diagram
again after the robot has
executed the following
commands:
move()
pickThing()

Concert

d ate: 28 -M arch-2008

perfo rm er: To ro nto Sym ph on y

un so ld Tickets : 35A, 35B, 35C

so ld Tickets : 10A, 10B, .. . , 34Z , ...
35D, .. .

Concert

date: 21-M arch-2008

p erfo rm er: Great B ig Sea

un so ld Tickets : 10D, 22H, 25A ,
25B, 25C, 28Z,...

Sold Seats : 10A, 10B, 10C,
.. ., 22N, 22P , . ..

Concert

date: 22 -M arch-2008

perform er: Great Big Sea

u nsoldT ickets: 35A, 35B, 35C

soldT ickets: 10A, 10B, ... , 34Z ,
... 35D , .. .

Type of
object

Attribute
values

Attribute
names

Q
ui

ck
 Q

ui
z

So
lu

tio
ns

1.

Robot

currrentAvenue: 1
currentStreet: 0

 direction: WEST
backpack: (empty

2.

Robot

currrentAvenue: 0
currentStreet: 0

 direction: WEST
backpack: one

thing

Solutions may also contain
attributes for the label and color.

1.
3:

 M
od

el
in

g
R

ob
ot

s
w

ith
 S

of
tw

ar
e

O
bj

ec
ts

A class diagram for the robot class:

Robot
int street
int avenue
Direction direction
ThingBag backpack
Robot(City aCity, int aStreet, int anAvenue,

Direction aDirection)
void move()
void turnLeft()
void pickThing()
void putThing()

1.
4:

 A
n

Ex
am

pl
e

Pr
og

ra
m

 (1
/3

)
Two robots running a “relay.”

Initial Situation

Final Situation

“B” picks up the
baton and takes it
to “K”, who
finishes the race.

1.
4:

 A
n

Ex
am

pl
e

Pr
og

ra
m

 (2
/3

) // Set up the initial situation
 City beijing = new City();
 Robot ben = new Robot(beijing, 2, 0, Direction.SOUTH);
 Robot karel = new Robot(beijing, 2, 3, Direction.SOUTH);
 Thing baton = new Thing(beijing, 3, 0);
 Wall finishLine = new Wall(beijing, 3, 6, Direction.EAST);
 karel.setLabel("K");
 ben.setLabel("B");

 // Run the relay
 ben.move(); // bwb
 ben.turnLeft();
 ben.pickThing();
 ben.move();
 ben.move();
 ben.move();
 ben.putThing();

 karel.move();
 karel.turnLeft();
 karel.pickThing();
 karel.move();
 karel.move();
 karel.move();
 karel.putThing();

1.
4:

 A
n

Ex
am

pl
e

Pr
og

ra
m

 (3
/3

) import becker.robots.*;

public class RobotRelay
{

 public static void main(String[] args)
 {

Code on the previous slide goes here.
All of the code goes into a computer file named
RobotRelay.java

 }
}

1.
4.

5:
 T

ra
ci

ng
 a

 P
ro

gr
am

 (1
/2

)
 ben karel baton
Program Stmt str ave dir bp str ave dir bp str ave
 2 0 S -- 2 3 S -- 3 0
ben.move();
 3 0 S -- 2 3 S -- 3 0
ben.turnLeft();
 3 0 E -- 2 3 S -- 3 0
ben.pickThing();
 3 0 E ba 2 3 S -- 3 0
ben.move();
 3 1 E ba 2 3 S -- 3 1
ben.move();
 3 2 E ba 2 3 S -- 3 2
ben.move();
 3 3 E ba 2 3 S -- 3 3

1.
4.

5:
 T

ra
ci

ng
 a

 P
ro

gr
am

 (2
/2

)
 ben karel baton
Program Stmt str ave dir bp str ave dir bp str ave
 3 3 E ba 2 3 S -- 3 3
ben.putThing();
 3 3 E -- 2 3 S -- 3 3
karel.move();
 3 3 E -- 3 3 S -- 3 3
karel.turnLeft();
 3 3 E -- 3 3 E -- 3 3
karel.pickThing();
 3 3 E -- 3 3 E ba 3 3
karel.move();
 3 3 E -- 3 4 E ba 3 4
karel.move();
etc. 3 3 E -- 3 5 E ba 3 5

1.
4.

8:
 R

ea
di

ng
 D

oc
um

en
ta

tio
n

to
 L

ea
rn

 M
or

e

1.
5:

 C
om

pi
lin

g
an

d
Ex

ec
ut

in
g

Pr
og

ra
m

s

1.
5.

1:
 C

om
pi

le
-T

im
e

Er
ro

rs

Three kinds of errors:
• Compile-Time Errors

• The compiler can’t translate your program into an executable
form because your program doesn’t follow the language’s rules.

• Examples:
• karel.move; instead of

karel.move();
• Public class RobotRelay instead of

public class RobotRelay
• Unmatched braces; a { without a corresponding }

• Run-Time Errors
• Intent (Logic) Errors

1.
5.

2:
 R

un
-T

im
e

Er
ro

rs

Three kinds of errors:
• Compile-Time Errors
• Run-Time Errors

• The compiler can translate your program and it begins to run, but
then an error occurs.

• Example:
• Code positions the robot in front of a wall

• The robot is told to move karel.move();

• Running into the wall causes the robot to
break (a run-time error)

• Intent (Logic) Errors

1.
5.

3:
 I

nt
en

t (
Lo

gi
c)

 E
rr

or
s Three kinds of errors:

• Compile-Time Errors
• Run-Time Errors
• Intent (Logic) Errors

• The compiler can translate your program and it runs to
completion, but it doesn’t do what you want it to.

• Example: In the relay race, the programmer forgets to instruct
karel to turn left after picking up the baton.

Initial Situation

Correct Final

Incorrect Final

1.
7:

 P
at

te
rn

s Patterns are fragments of code that appear repeatedly.
We give them names and learn them so that:
• we can recognize when they are being used
• we can discuss them easily with others
• we can apply them in new situations

When patterns are used in the text, an icon and the pattern name
appears in the margin. Discussed in detail later in the chapter.

1.
7.

1:
 T

he
 J

av
a

Pr
og

ra
m

 P
at

te
rn

Name: Java Program
Context: Writing a Java program
Solution:

import «importedPackage»; // may have 0 or more import statements

public class «className»
{
 public static void main(String[] args)
 { «list of statements to be executed»
 }
}

Consequences: A class is defined that can begin the execution of a
program.
Related Patterns:
• All the other patterns in Chapter 1 occur within the context of the

Java Program pattern.
• All Java programs use this pattern at least once.

1.
7.

2:
 T

he
 O

bj
ec

t I
ns

ta
nt

ia
tio

n
Pa

tte
rn

Name: Object Instantiation
Context: An object is needed to carry out various services.
Solution:

Examples:
City manila = new City();
Robot karel = new Robot(manila, 5, 3, Direction.EAST);

Pattern:
«variableType» «variableName» =
 new «className»(«argumentList»);

For now, «variableType» and «className» will be the same. The
«argumentList» is optional.

Consequences: A new object is constructed and assigned to the given
variable.
Related Patterns: The Command Invocation pattern requires this
pattern to construct the object it uses.

1.
7.

3:
 T

he
 C

om
m

an
d

In
vo

ca
tio

n
Pa

tte
rn

Name: Command Invocation
Context: You want an object to perform one of its services.
Solution:

Examples:
karel.move();
collectorRobot.pickThing();

Pattern:
«objectReference».«commandName»(«argumentList»);

The «argumentList» is optional.
Consequences: The command is performed by the object.
Related Patterns: The Object Instantiation pattern must be preceded
by this pattern. The Sequential Execution pattern uses this pattern two
or more times.

1.
7.

4:
 T

he
 S

eq
ue

nt
ia

l E
xe

cu
tio

n
Pa

tte
rn

Name: Sequential Execution
Context: Your problem can be solved with a sequence of steps where
the order of the steps matters.
Solution: List the steps to be executed in order so that each statement
appears after all the statements upon which it depends.
For example, the following two program fragments are the same except
for their order. They do different things; only one of which is correct
in a given context.

karel.move();
karel.turnLeft();

karel.turnLeft();
karel.move();

Consequences: Each statement is executed in turn. The result usually
depends on the statements that have been previously executed.
Related Patterns: This pattern uses the Command Invocation pattern
two or more times.

C
as

e
St

ud
y

1:
 P

la
nt

 F
lo

w
er

s You have a garden enclosed with four walls, as shown in the initial
situation. You want to plant flowers around it, as shown in the final
situation. Program a robot, karel, to do this for you.

Initial Situation

Final Situation

Questions:
• Where do the “flowers” (Thing objects) come from?
• How many walls are there? How are they positioned?

C
as

e
St

ud
y

1:
 P

la
nt

 F
lo

w
er

s import becker.robots.*;

// Plant flowers around a square garden wall.
public class PlantFlowers
{
 public static void main(String[] args)
 {
 // Code to create the initial situation goes here.

 // Code to plant the flowers goes here.

 }
}

C
as

e
St

ud
y

1:
 P

la
nt

 F
lo

w
er

s import becker.robots.*;

// Plant flowers around a square garden wall.
public class PlantFlowers
{
 public static void main(String[] args)
 {
 // Code to create the initial situation goes here.
 City berlin = new City();
 Wall eWall = new Wall(berlin, 1, 2, Direction.EAST);
 Wall nWall = new Wall(berlin, 1, 2, Direction.NORTH);
 Wall wWall = new Wall(berlin, 1, 2, Direction.WEST);
 Wall sWall = new Wall(berlin, 1, 2, Direction.SOUTH);

 // Create a robot with 8 things already in its backpack.
 Robot karel = new Robot(berlin, 0, 1, Direction.SOUTH, 8);

 // Code to plant the flowers goes here.

 }
}

Q
ui

ck
 Q

ui
z 1.Name all the patterns used in this case study.

2.Which patterns are not used?

Q
ui

ck
 Q

ui
z

So
lu

tio
ns

1.Patterns that are used:
• Java Program
• Object Instantiation
• Sequential Execution

2.Patterns that are not used:
• Command Invocation

C
as

e
St

ud
y

1:
 P

la
nt

 F
lo

w
er

s …
 Robot karel = new Robot(berlin, 0, 1, Direction.SOUTH, 8);

 // Code to plant the flowers goes here.
 karel.move();
 karel.putThing();
 karel.move();
 karel.putThing();
 karel.turnLeft();

 karel.move();
 karel.putThing();
 karel.move();
 karel.putThing();
 karel.turnLeft();

 karel.move();
 karel.putThing();
 karel.move();
 karel.putThing();
 karel.turnLeft();
 karel.move();
 karel.putThing();
 karel.move();
 karel.putThing();
 karel.turnLeft();

 }
}

Note: The robot does the
same steps four times,
once for each side of the
square. In the next lesson
we’ll learn how to exploit
that fact.

C
as

e
St

ud
y

2:
 A

n
A

ss
em

bl
y

Li
ne

Write a program in which three robots on an “assembly line” are
positioned along street 0 at avenues 0, 1, and 2. A “part” (Thing) is
positioned at (1, 0) on a “conveyor belt” along street 1. Starting with
the westernmost robot, each robot processes the part in some way and
then moves it into position for the next robot on the assembly line
before returning to its own starting position.

Initial Situation

Final Situation

Questions:
• What path must each robot take to do its task?
• Does it matter which robot goes first?
• How can a robot turn around? Turn right?

C
as

e
St

ud
y

2:
 A

n
A

ss
em

bl
y

Li
ne

 import becker.robots.*;

// Simulate an assembly line with three robots and one part.
public class AssemblyLine
{

 public static void main(String[] args)
 {

C
as

e
St

ud
y

2:
 A

n
A

ss
em

bl
y

Li
ne

 import becker.robots.*;

// Simulate an assembly line with three robots and one part.
public class AssemblyLine
{

 public static void main(String[] args)
 { // Set up the initial situation
 City guelph = new City();
 Robot rayna = new Robot(guelph, 0, 0, Direction.SOUTH);
 Robot roopa = new Robot(guelph, 0, 1, Direction.SOUTH);
 Robot ruth = new Robot(guelph, 0, 2, Direction.SOUTH);

 Thing part = new Thing(guelph, 1, 0);

C
as

e
St

ud
y

2:
 A

n
A

ss
em

bl
y

Li
ne

 public static void main(String[] args)
 { // Set up the initial situation
 City guelph = new City();
 Robot rayna = new Robot(guelph, 0, 0, Direction.SOUTH);
 Robot roopa = new Robot(guelph, 0, 1, Direction.SOUTH);
 Robot ruth = new Robot(guelph, 0, 2, Direction.SOUTH);

 Thing part = new Thing(guelph, 1, 0);

 // The first robot moves the thing to the next stage.
 rayna.move();
 rayna.pickThing();
 rayna.turnLeft();
 rayna.move();
 rayna.putThing();
 rayna.turnLeft();
 rayna.turnLeft();
 rayna.move();
 rayna.turnLeft();
 rayna.turnLeft();
 rayna.turnLeft();
 rayna.move();
 rayna.turnLeft();
 rayna.turnLeft();
 // Repeat the above steps for each of the other robots.

A
pp

lic
at

io
n:

 U
si

ng
 w

ha
t w

e’
ve

 le
ar

ne
d Apply the patterns learned with Robots to other situations

e.g.: To create the beginnings of a graphical user interface.

Use the JFrame, JLabel, JTextField, and JTextArea classes to write
a program that looks (sort of) like a Web browser:

JFrame

JLabel
JTextField

JTextArea

Use the following patterns:
• Java Program
• Object Instantiation

• Command Invocation

A
pp

lic
at

io
n:

 G
et

tin
g

R
ea

dy
 to

 P
ro

gr
am

A
pp

lic
at

io
n:

 T
he

 J
av

a
Pr

og
ra

m
 P

at
te

rn
 import javax.swing.*;

// Write a program that display a window which looks sort of like a Web browser.
public class Browser
{
 public static void main(String[] args)
 {
 // Construct appropriate objects

 // Use their services
 }
}

A
pp

lic
at

io
n:

 T
he

 O
bj

ec
t I

ns
ta

nt
ia

tio
n

Pa
tte

rn
 import javax.swing.*;

// Write a program that display a window which looks sort of like a Web browser.
public class Browser
{
 public static void main(String[] args)
 {
 // Construct appropriate objects
 JFrame frame = new JFrame();
 JPanel contents = new JPanel();
 JLabel label = new JLabel("URL:");
 JTextField url = new JTextField(15);
 JTextArea html = new JTextArea(10, 20);

 // Use their services
 }
}

A
pp

lic
at

io
n:

 C
om

m
an

d
In

vo
ca

tio
n

Pa
tte

rn
 …

 public static void main(String[] args)
 {
 // Construct appropriate objects
 JFrame frame = new JFrame();
 JPanel contents = new JPanel();
 JLabel label = new JLabel("URL:");
 JTextField url = new JTextField(15);
 JTextArea html = new JTextArea(10, 20);

 // Use their services
 contents.add(label);
 contents.add(url);
 contents.add(html);

 frame.setContentPane(contents);

 frame.setTitle("Browser");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLocation(250, 100);
 frame.setSize(250, 250);
 frame.setVisible(true);
 }
}

1.
8:

 C
on

ce
pt

 M
ap

objects are instances of classes

attributes

have their own values for

define

services

define

move,
turnLeft

are exam
ples of

Robot and
City

a program

so
lv

es
 a

pr
ob

lem
 u

sin
g

is composed of

model

implem
ents a

co
rre

spo
nd

 to

ent
itie

s in
 th

e

problem to
be solved

abstracts a

arguments

parameters

provide values to convey
information to

from the same class

share a common set of

are exam
ples of

Su
m

m
ar

y We have learned:
• how to create objects using an existing class

(e.g.: Robot karel = new Robot(myCity, 1, 2, Direction.EAST);)
• how to use an object’s services

(e.g.: karel.move();)
• that these program statements must be contained within the Java

Program pattern.
• that objects have attributes to store information.
• that objects are defined by a class.
• how to use documentation to find out more about a class.
• that several kinds of errors can affect a program.
• that many code patterns occur repeatedly in programs.

